How Studying Bats Can Help Predict and Prevent the Next Pandemic
Caroline Chen (ProPublica) 23 May 2023
This story was originally published by ProPublica.
Dressed head-to-toe in protective gear, Peggy Eby crawled on her hands and knees under a fig tree, searching for bat droppings and fruit with telltale fang marks.
Another horse in Australia had died from the dreaded Hendra virus that winter in 2011. For years, the brain-inflaming infectious disease had bedeviled the country, leaping from bats to horses and sometimes from horses to humans. Hendra was as fatal as it was mysterious, striking in a seemingly random fashion. Experts fear that if the virus mutates, it could jump from person to person and wreak havoc.
So while government veterinarians screened other horses, Eby, a wildlife ecologist with a Ph.D., got to work, grubbing around the scene like a detective. Nobody knew flying foxes, the bats that spread Hendra, better. For nearly a quarter century, she’d studied the furry, fox-faced mammals with wingspans up to 3 feet. Eby deduced that the horse paddock wasn’t where the bats had transmitted Hendra. But the horse’s owners had picked mandarin oranges off the trees across the street. The peels ended up in the compost bin, where their horse liked to rummage. “Bingo,” Eby thought. Flying foxes liked mandarins. The bats’ saliva must have contaminated the peels, turning them into a deadly snack.
Eby, however, longed to unlock a bigger mystery: Could she, with the help of fellow scientists, predict when the conditions were prime for Hendra to spill over from bats, before it took any more lives? What if they could warn the public to be on guard — maybe even prevent the virus from making the leap? It would be painstaking work, but it wasn’t a pipe dream; Eby was already spotting patterns as she crawled around infection sites.
But when she pitched her research to a government funder the following year, she got a flat no. She proposed starting small, gathering basic data on flying foxes that could be used to figure out when and why they spread the virus. Her work, she was told, wasn’t considered a “sufficiently important contribution.”
Global health organizations and governments have long focused on responding to outbreaks rather than predicting and preventing them. Billions of dollars pour into developing treatments and vaccines for infectious diseases, but only a small fraction goes to understanding why contagions spread from animals to humans in the first place. Some experts reject even that, viewing spillover as too random, mysterious and rare to be observed and studied.
The work Eby does is the opposite of the major research projects on deadly diseases that typically get scientific grants. Government and nonprofit funders are often drawn to studies involving cutting-edge technology like artificial intelligence, and they want results in a few years’ time. Eby had spent decades trekking into the Australian bush, often on her own dime, observing flying foxes for hours on end with only a notebook and a pair of binoculars. To support her research, she took on consulting jobs, such as advising towns whose residents viewed bats as pests. She knew, though, that side hustles would never be enough to support the multidisciplinary team of scientists needed to crack the Hendra virus.
In the years that followed, Eby found like-minded scientists, and the team, led by women, persisted. They cobbled together grant after grant, battled burnout and kept impatient funders at bay. A decade after Eby’s government grant proposal was shot down, they published a groundbreaking paper in the journal Nature that demonstrated it was not only possible to predict Hendra virus spillover, but it might be preventable. Only then did it become obvious just how important Eby’s quiet fieldwork truly was.
Dr. Neil Vora, a tuberculosis physician and former officer at the U.S. Centers for Disease Control and Prevention, said he was thrilled when he saw the paper. “It gave clear evidence that we can take actions to prevent spillovers of viruses,” said Vora, who now works for environmental nonprofit Conservation International. “I hope it helps to convince funders and policymakers that spillover prevention merits implementation now.”
In a world still scarred by the COVID-19 pandemic, Eby’s dogged success exposes a global scientific blind spot. It’s not that trendy science involving the latest AI wonders isn’t worthy of research dollars. It’s that it should not be funded at the expense of the sort of long-term, shoe-leather work that allowed Eby and her colleagues to solve the mystery of a deadly contagion, Vora and other public health experts say. “All of these actions are important if we want to save as many lives as possible from infectious diseases,” Vora added.
Novel infectious diseases will keep coming at us, Eby warns. Investing in scientific work like hers “seems like a poor approach now,” she said, “but 20 years from now, we’ll look back and wonder why we didn’t do it.” Continue Reading…
Free Helpline
Legal Credit